Processing math: 100%
+ - 0:00:00
Notes for current slide
Notes for next slide



Sequentiality in Bayesian Analyses

Dr. Mine Dogucu

Examples from bayesrulesbook.com

1 / 16

Sequential Analysis

In a sequential Bayesian analysis, a posterior model is updated incrementally as more data comes in. With the introduction of each new piece of data, the previous posterior model reflecting our understanding prior to observing this data becomes the new prior model.

2 / 16

Let's time travel to the end of 1970

πBeta(14,1)

3 / 16

Let's time travel to the end of 1970

πBeta(14,1)

bechdel %>%
filter(year == 1970)
## # A tibble: 1 x 3
## year title binary
## <dbl> <chr> <chr>
## 1 1970 Beyond the Valley of the Dolls PASS
4 / 16

The Posterior

summarize_beta_binomial(14, 1, y = 1, n = 1)
## model alpha beta mean mode var sd
## 1 prior 14 1 0.9333333 1 0.003888889 0.06236096
## 2 posterior 15 1 0.9375000 1 0.003446691 0.05870853
5 / 16

At the end of 1971

πBeta(15,1)

6 / 16

At the end of 1971

πBeta(15,1)

bechdel %>%
filter(year == 1971)
## # A tibble: 5 x 3
## year title binary
## <dbl> <chr> <chr>
## 1 1971 Escape from the Planet of the Apes FAIL
## 2 1971 Shaft FAIL
## 3 1971 Straw Dogs FAIL
## 4 1971 The French Connection FAIL
## 5 1971 Willy Wonka &amp; the Chocolate Factory FAIL
7 / 16

The Posterior

summarize_beta_binomial(15, 1, y = 0, n = 5)
## model alpha beta mean mode var sd
## 1 prior 15 1 0.9375000 1.0000000 0.003446691 0.05870853
## 2 posterior 15 6 0.7142857 0.7368421 0.009276438 0.09631427
8 / 16

At the end of 1972

πBeta(15,6)

9 / 16

At the end of 1972

πBeta(15,6)

bechdel %>%
filter(year == 1972)
## # A tibble: 3 x 3
## year title binary
## <dbl> <chr> <chr>
## 1 1972 1776 FAIL
## 2 1972 Pink Flamingos PASS
## 3 1972 The Godfather FAIL
10 / 16

The Posterior

summarize_beta_binomial(15, 6, y = 1, n = 3)
## model alpha beta mean mode var sd
## 1 prior 15 6 0.7142857 0.7368421 0.009276438 0.09631427
## 2 posterior 16 8 0.6666667 0.6818182 0.008888889 0.09428090
11 / 16
Time Data Model
before the analysis NA Beta(14,1)
at the end of 1970 Y = 1, n = 1 Beta(15,1)
at the end of 1971 Y = 0, n = 5 Beta(15, 6)
at the end of 1972 Y = 1, n = 3 Beta(16,8)
12 / 16

Data Order Invariance

Time Data Model
before the analysis NA Beta(14,1)
1972 Y = 1, n = 3 Beta(15,3)
1971 Y = 0, n = 5 Beta(15,8)
1970 Y = 1, n = 1 Beta(16,8)
13 / 16

What if we observed all the data at once?

Time Data Model
before the analysis NA Beta(14,1)
1970 Y = 1, n = 1
1971 Y = 0, n = 5
1972 Y = 1, n = 3
Total Y = 2, n = 9
14 / 16
summarize_beta_binomial(14, 1, y = 2, n = 9)
## model alpha beta mean mode var sd
## 1 prior 14 1 0.9333333 1.0000000 0.003888889 0.06236096
## 2 posterior 16 8 0.6666667 0.6818182 0.008888889 0.09428090
15 / 16

Let θ be any parameter of interest with prior pdf f(θ). Then a sequential analysis in which we first observe a data point y1 and then a second data point y2 will produce the same posterior model of θ as if we first observe y2 and then y1:

f(θ|y1,y2)=f(θ|y2,y1).

Similarly, the posterior model is invariant to whether we observe the data all at once or sequentially.

16 / 16

Sequential Analysis

In a sequential Bayesian analysis, a posterior model is updated incrementally as more data comes in. With the introduction of each new piece of data, the previous posterior model reflecting our understanding prior to observing this data becomes the new prior model.

2 / 16
Paused

Help

Keyboard shortcuts

, , Pg Up, k Go to previous slide
, , Pg Dn, Space, j Go to next slide
Home Go to first slide
End Go to last slide
Number + Return Go to specific slide
b / m / f Toggle blackout / mirrored / fullscreen mode
c Clone slideshow
p Toggle presenter mode
t Restart the presentation timer
?, h Toggle this help
Esc Back to slideshow